Hyperforin/HP-β-Cyclodextrin Enhances Mechanosensitive Ca2+ Signaling in HaCaT Keratinocytes and in Atopic Skin Ex Vivo Which Accelerates Wound Healing
نویسندگان
چکیده
Cutaneous wound healing is accelerated by mechanical stretching, and treatment with hyperforin, a major component of a traditional herbal medicine and a known TRPC6 activator, further enhances the acceleration. We recently revealed that this was due to the enhancement of ATP-Ca2+ signaling in keratinocytes by hyperforin treatment. However, the low aqueous solubility and easy photodegradation impede the topical application of hyperforin for therapeutic purposes. We designed a compound hydroxypropyl-β-cyclodextrin- (HP-β-CD-) tetracapped hyperforin, which had increased aqueous solubility and improved photoprotection. We assessed the physiological effects of hyperforin/HP-β-CD on wound healing in HaCaT keratinocytes using live imaging to observe the ATP release and the intracellular Ca2+ increase. In response to stretching (20%), ATP was released only from the foremost cells at the wound edge; it then diffused to the cells behind the wound edge and activated the P2Y receptors, which caused propagating Ca2+ waves via TRPC6. This process might facilitate wound closure, because the Ca2+ response and wound healing were inhibited in parallel by various inhibitors of ATP-Ca2+ signaling. We also applied hyperforin/HP-β-CD on an ex vivo skin model of atopic dermatitis and found that hyperforin/HP-β-CD treatment for 24 h improved the stretch-induced Ca2+ responses and oscillations which failed in atopic skin.
منابع مشابه
Mechanosensitive ATP release from hemichannels and Ca²⁺ influx through TRPC6 accelerate wound closure in keratinocytes.
Cutaneous wound healing is accelerated by exogenous mechanical forces and is impaired in TRPC6-knockout mice. Therefore, we designed experiments to determine how mechanical force and TRPC6 channels contribute to wound healing using HaCaT keratinocytes. HaCaT cells were pretreated with hyperforin, a major component of a traditional herbal medicine for wound healing and also a TRPC6 activator, an...
متن کاملEstrogen Accelerates Cutaneous Wound Healing by Promoting Proliferation of Epidermal Keratinocytes via Erk/Akt Signaling Pathway.
BACKGROUND Previous studies have established that estrogen is capable of accelerating cutaneous wound healing through multiple mechanisms, one of which involves affecting keratinocytes biological properties, such as migration, proliferation, etc. This study aims to reveal the underlying molecular mechanisms of estrogen promoting epidermal keratinocytes proliferation. Method & RESULTS We f...
متن کاملLocal Administration of L-Arginine Accelerates Wound Closure
Objective(s) The process of wound healing involves tightly integrated events including inflammation, granulation tissue formation and remodeling. Systemic administration of L-arginine promotes wound healing but its global side effects are undesirable. To confine the action of L-arginine at the site of injury, we tested the effects of local administration of L-arginine on the healing of excisio...
متن کاملEffect of electrospun non-woven mats of dibutyryl chitin/poly(lactic acid) blends on wound healing in hairless mice.
The aim of this study was to examine the proliferative ability of dibutyryl chitin (DBC) on scratch wounds in HaCaT keratinocytes and to evaluate the effect of nanoporous non-woven mat (DBCNFM) on skin wound healing in hairless mice using the advantages of DBCNFM, such as high porosity and high surface area to volume. The cell spreading activity of DBC was verified through a cell spreading assa...
متن کاملValproic Acid Induces Cutaneous Wound Healing In Vivo and Enhances Keratinocyte Motility
BACKGROUND Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK) signaling pathways. Valproic acid (VPA) is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. METHODS AND FINDINGS We created full-thickness wounds o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017